

De-carbonization Pathways with Leading Tug Designs

ELECT

May 2022 Lawren Best, Director of Design Development LBest@ral.ca

Robert Allan Ltd.

- Founded 1930 in Vancouver; Canada's oldest consulting naval architectural firm
- Recognized internationally as the leading independent designer of high-performance escort, ship-handling tugs, shallow draft towboats and fireboats
- ~95 employees including ~40 professional engineers

Global Fleet – Latest Thousand Deliveries

• An average of about 80 RAL designed vessels get built internationally every year

Map data by openstreetmap.org and opendatacommons.org Tug location data by marinetraffic.com Overlay by arcgis.com

Propulsion Alternatives for Tugs and Towboats

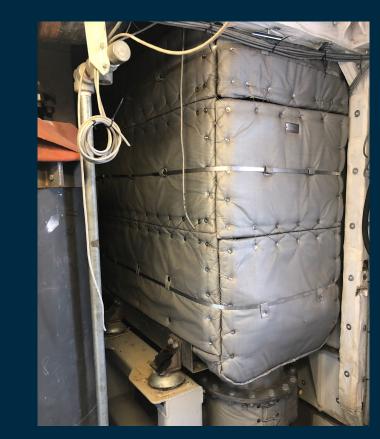
- Diesel Hybrids and Diesel Electric
- Diesel (ULSFO) with exhaust after-treatment (IMO III)

ROBERT ALLAN

- LNG (dual fuel or pure gas) and CNG
- Hydrogen / Ammonia / Methanol
- Battery Electric

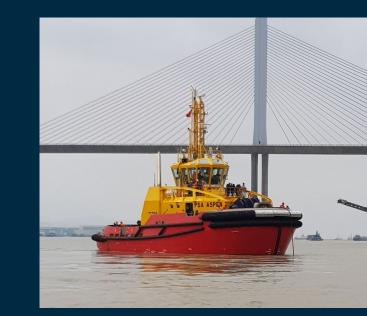
Diesel Hybrids and Diesel Electric

- Limitless flavours
- Just as capable as conventional diesel tugs
- Increased complexity
- Modest CAPEX increase
- Can be *some* OPEX and GHG reductions
 - Diesel electric rarely makes financial sense for tugs or towboats
 - Better case for hybrids with reduced running hours, but fuel savings benefits often overstated
 - Batteries need to utilize shore power to be effective



Diesel + Exhaust Aftertreatment

- IMO III now required in Canada and significantly reduces NOx pollution
- EPA 4 in USA also reduces Particulate Matter pollution
- Neither reduces Carbon or GHG
- Moving towards Bio / Renewable Diesel offers limited long term pathway for decarbonization due to limited feed stocks
- May still make sense when supporting infrequent high power operations such as Fi-Fi or salvage



LNG & CNG

- High CAPEX for LNG. CNG offers limited range/endurance
- Reduced OPEX, but reasonable payback period is only with heavy load profile (ie. Long distance escort tugs)
- Increased complexity vs. diesel
- Reduction in CO₂, but need to control CH₄ emissions (methane slip)
- Range and endurance limitations, bunkering challenges

Experience with LNG Designs & Tugs In-Service

- 5 RAL designed LNG Dual Fuel tugs now in service, 28m (92') to 40m (131') in length
- 4 more RAL LNG Dual Fuel tugs currently under construction, 40m and 42m
- Class Approval in Principle (AiP) received for Pure Gas Fleeting Towboat developed with MTU
- Design of LNG Dual Fuel Towboat and Barge to transport bulk LNG completed
- Long term adoption of LNG for tugs is expected to be very limited to unique applications

Lessons from LNG Designs & Tugs In-Service

- Latest gas engines are improving, but still critical to optimize propulsion system to operating role of vessel to achieve true emissions reductions
- Gas Safe machinery approach has been adopted instead of Emergency Shutdown. Expectation is similar strong trend will apply to future fuels as also under IGF Code
- Operators now starting to implement Renewable LNG (RNG)
- As with all future fuels each Flag State and Classification Society approaches slightly differently and early engagement needed for successful projects
- Existing workboats (tugs & towboats) do not have sufficient space, deadweight/trim capacity to enable retrofits without significant reductions in endurance
- New designs must be designed around future fuel system to maximize endurance and minimize large CAPEX increases

OARD PROFILE

STARBOARD

INBOARD PROFILE

Hydrogen

- Basis for decarbonized molecule based energy systems
- Tank to propeller emissions = only water!
- Potential for large emissions from upstream production (grey vs. green hydrogen)
- Nontoxic, but very explosive and flammable
- Significant storage issues as Liquid (-253°C) or Compressed (Up to 700 bar)

	MGO	LNG	H ₂ (liquid)	Ammonia	Methanol
Density (t/m³)	0.835	0.428	0.071	0.61	0.792
LHV (GJ/t)	42.7	48.6	120	18.6	19.9
GJ/m ³	35.7	20.8	8.5	11.4	15.8
Volume (m ³ /GJ) normalized	1	1.7	4.2	3.1	2.3

• Initial technology demonstrator projects are now reaching market

Hydrogen Production

Grey Hydrogen

- Produced by reforming natural gas
- 96% of worldwide hydrogen production
- Fuel price up to 4 x diesel
- GHG emissions greater than diesel

Green Hydrogen

- Produced by electrolysis
- Fuel price up to 10 x diesel
- Fuel price expected to drop with large scale electrolysis plants; down to 2x diesel
- Zero emissions

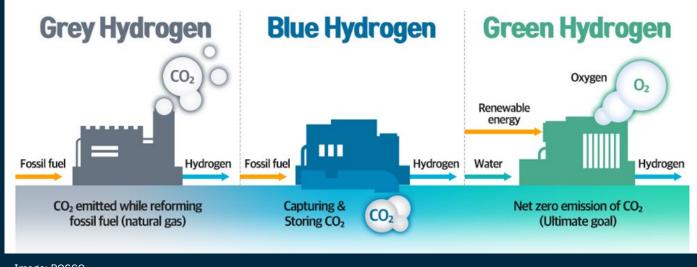
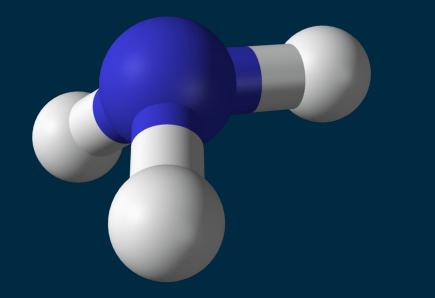
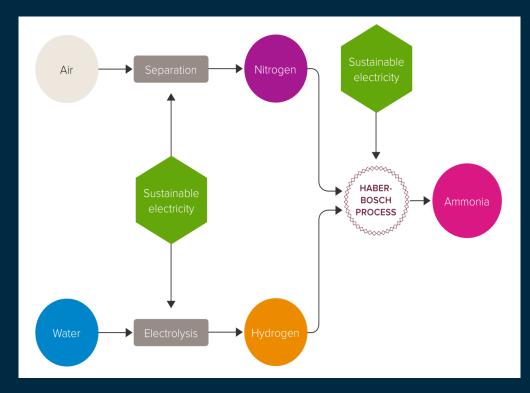


Image: POSCO

Hydrogen – Combustion and Fuel Cells

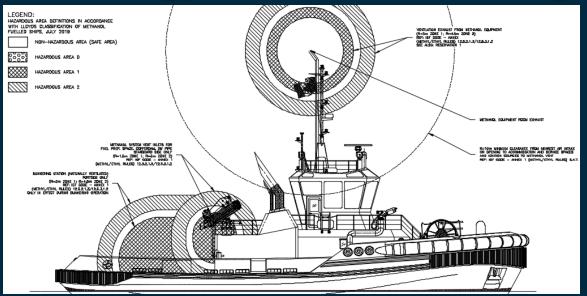
- Hydrogen combustion still expensive and unproven
 - Cryogenic storage required for long endurance
 - Difficult hazardous zone considerations
 - Pricing and availability of green vs. grey hydrogen
 - Limited engine options slowly coming to market
- Fuel cells Decent range and endurance but very high CAPEX
 - Still need batteries or additional power sources to handle propulsion load response, larger vessel to accommodate all equipment
 - Compressed hydrogen possible for short range/endurance operations
 - Cryogenic storage required for long endurance
 - Potential reforming options from Ammonia and Hydrogen Storage
 - Prices need to come down to be economically viable for workboats

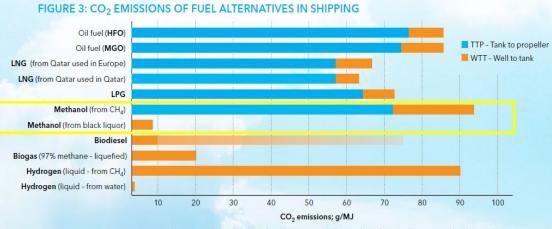




Ammonia

- No Carbon!
- Flammable Gas, Very Toxic, Highly Corrosive
- Very toxic to marine life
- Boiling Point -33.4°C, can be stored as a liquid at room temperature at 8.6 bar
- Some lessons from LNG can be applied, but considerable challenges remain:
 - Regulations and Risk Assessments need to be developed by Class to suit smaller vessels
 - Engine development would be needed for engines to fit within tugs. High speed engines unlikely in near future
 - Potential Nitrous Oxide concerns similar to Methanol Slip
 - Requirements as written make compliance on <40m tugs near impossible. Detailed risk assessments would need to be performed in order to proceed.





Methanol

- Not cryogenic, not toxic like Ammonia, but still low-flash under IGF Code so requires segregation from machinery spaces and sources of ignition
- Lower CAPEX hit to vessel once engines developed
- Not many engine options yet, but additional options coming to market
- Burning of methanol can be carbon-neutral, but must consider upstream production
- Strong potential for future fuel for tugs

Source: DNV GL calculations; Bio diesel: emissions depend on the production method. Graphic uses data from the European Renewable Energy Directive (Council of the European Union, Interinstitutional File: 2016/0382 (COD), Brussels, 21 June 2018)

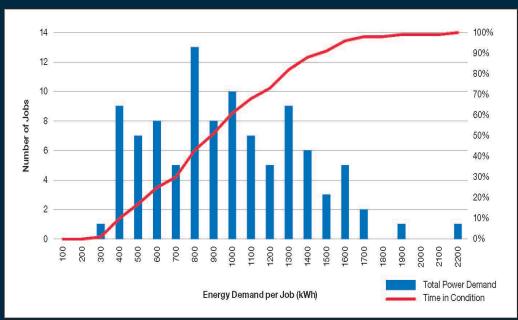
Green Methanol Production

Production facilities for Green Methanol

Many manufacturing operations exists, proving the technological feasibility

Source: Methanol Institute

(Image Source: Methanex)


Methanol Designs

- Agreement with Uzmar in Turkey for four Methanol fuelled tug designs
- First based on proven RAstar 3200-W design with ~120m³ of Methanol capacity expected based on current regulations (Current design ~200m³ of diesel)
- New fully customized designs also underway to maximize endurance
- Methanol fuelled tug design being developed for Svitzer
- Jointly working with Class to update current Methanol guidance to reflect tug configurations and lessons learned from LNG tugs, to increase flexibility and endurance
- Methanol fuelled Crew Transfer Vessel has been developed for wind farm market
- With supply of low carbon Methanol from Alberta production facility BC has potential decarbonization pathway for applications where batteries not possible

Battery Electric

- Removes inefficiencies of creating green hydrogen/ ammonia/methanol by utilizing electricity directly
- Zero emission operation *when charged from <u>clean</u>* <u>shore power</u>
- Early adoption in other regions will receive benefits of greening power grid
- CAPEX increase highly dependent on installed batteries capacity
- Reduced OPEX; payback period dependent on differential between prices of diesel and electricity
- Range and endurance limitations, but can be acceptable in harbour/fleeting operations
- Strongest cases for adoption where applied in fleets with large number of short duration jobs
- Integration with shore power infrastructure key for successful project
- First adoptions already a reality and BC leading this path to decarbonization

POREPT ALLA

ElectRA Series

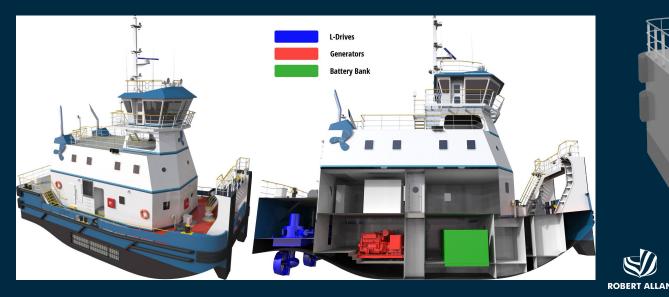
- Utilize proven, high performance hullforms with stylishly designed low-profile superstructures for working under high-flare ships
- Industry-leading battery capacity in compact vessel dimensions, best-in-class range and endurance
- Battery capacity and backup generator power customizable to operator specific requirements
- Multi-layered battery safety systems
- Optimized for industry leading Corvus Orca batteries but customizable for alternative suppliers
- Optional Fi-Fi and escort notations on most designs
- Flexible to wide range of bollard pulls

ElectRA Series

• +10 Battery Electric Tugs under construction or design for Sanmar in Turkey that will be delivered in 2023 & 2024. Market is driving rapid adoption of this decarbonization pathway

ElectRA 1900 & 2300 Flush deck, day boat configurations 2.0 to 3.6 MWh battery capacity 1 or 2 Gensets, Limited or Full Fi-Fi Capability 40t to 70t BP

ElectRA 2500 & 2800 Stepped deck, full accommodations 3.4 to 6.1 MWh battery capacity 2 x Large Gensets, Full Fi-Fi 1 Capability +70t BP, 40t BP Continuous


Battery Electric Harbour Tug Examples

- 28m *ElectRA 2800* Battery Electric Harbour Tug designed for HaiSea Marine (JV of Haisla First Nation and Seaspan) for operations in Kitimat, BC to serve LNG Canada export terminal
- 3 *ElectRA 2800*s currently under construction at Sanmar in Turkey
- 5,300kW-h initial battery capacity with potential expansion to 6,100kW-h
- Initial capacity allows for all regular port assistance of gas carriers purely on battery power
- Clean hydro power allows maximum potential carbon reduction
 - Approx. 2,000 tonnes carbon saved per year, per tug
- **ElectRA 2800**s paired with **RAstar 4000-DF** Dual Fuel Escort Tugs to handle 160nm high speed escort of gas carriers. Important example of selecting technology for each role.

Battery Electric Fleeting Towboat

- 20m *RApide 2000-E* Battery Electric Fleeting Towboats designed for Hidrovias do Brasil for operations on Amazon River
- 2 x **RApide 2000-E** towboats under construction at Belov in Brazil
- Being built with expandible battery capacity to increase range and endurance in future
 - 600kW-h initially with potential expansion to 1800kW-h
- As the power grid becomes greener battery vessels directly gain the benefits of that reduced carbon

In Summary

- Selection of energy technology will be dependent on unique requirements of each project
- Conventional diesel with after-treatment (EPA 4 / IMO III) will have a place for years to come with some hybrids justified however is not a direct path to decarbonization
- Fuel cells are potential long term zero emissions option
- Availability of green methanol, ammonia, hydrogen combustion could present financially attractive low-emission opportunities
- Adoption of battery electric workboats is rapidly accelerating
 - A good fit when clean shore power exists or grid will green over time to enable operations with zero emissions
 - Wide range of *ElectRA* series tugs are now available and is continually being expanded
 - Shore infrastructure to support battery electric tugs important consideration

Thank you for your time