

Low-Carbon Fuels - Regulation, Uses and Production

Rob Pinchuk – Director, Business Planning and Strategy

PARKLAND - WHO ARE WE

PARKLAND – FUEL MARKETING AND PRODUCTION

3

BACKGROUND – BURNABY REFINERY

4

PARKLAND BURNABY REFINERY OVERVIEW - KEEPING BC RUNNING

- 55,000 bbl/d nameplate capacity (light sweet refinery)
- 85% of output stays in British Columbia

- The Refinery employs over 500 people, and over 100 Power Engineers
 - 40% of output stays in the Lower Mainland

 25% of BC's transportation fuel

30% of YVR's jet fuel

Low Carbon Fuel Regulations

Compliance comes at a cost!

Low carbon polices in NA continue to ramp up

Energizing Communities Source: Baker & O'Brien, Scotiabank

Bio vs Fossil Feed Carbon Cycle

LCA – Life Cycle Analysis

Source		Parkland	
Feedstock	ľ	Alberta Canola Oil	Saskatchewan Canola Oil
		g C(D ₂ eq/GJ
Fuel dispensing			
Fuel distribution and storage			
Fuel production			
Feedstock transmission			
Feedstock recovery			
Feedstock upgrading			
Land-use changes, cultivation			
Fertilizer manufacture			
Gas leaks and flares			
CO ₂ , H ₂ S removed from NG			
Emissions displaced			
Total			
Fuel Use			
Grand Total			
CI Grand Total, g CO ₂ eq/MJ			

Table ES-1 CI Parkland Renewable Diesel GHGenius 4.03 Scenario 1

Low Carbon Fuel Regulations

Efficiency or Substitution

LCFR Background and History

- Regulation tends to drive biofuel substitution
- Existing US and Canadian federal regulations was already pushing ethanol and biodiesel blending
- Normal limits of 10% ethanol and 5% provided compliance until about 2016
- Renewable Diesel is the only commercial scale biofuel available to go beyond this
- Compliance pooling RD blending generates credits for gasoline compliance

Low-Carbon Fuel Regulations are driving major change in the liquid fuels industry

Primary compliance pathway is substitution of conventional fossils fuels with biofuels

	Substitution Rate Canada	Substitution Rate BC
Ethanol	8.2 % of gasoline	9.2% of gasoline
Biodiesel	1.3% of diesel	2.8% of diesel
Renewable Diesel	0.9 % of diesel	4.5% of diesel

As a refiner your purpose is to make transportation fuel

Biofuels Production

Refinery Conversions to Double US Biofuels Output

Copyright © 2023 Energy Intelligence Group

Renewables / Oil & Gas / Energy / Commodities

- Imperial Oil greenlights \$720
- million to build largest
- renewable diesel plant in Canada

Plant expected to produce more than one billion litres of fuel a year using vegetable oils

Ottawa spending \$86M on Come By Chance refinery's conversion to biofuels

Construction should be completed by end of 2023, says Braya president

CBC News · Posted: May 31, 2023 12:11 PM PDT | Last Updated: May 31

"Refinery Conversion" is not a good name

Parkland's Approach

Renewable Diesel	Coprocessing
 Purpose built vendor supported Feeds limited to fats, oils and greases Pure renewable diesel product 	 Bio-feed into existing refinery units True adaption of existing refinery units to renewable feed Process units, tanks, utilities, control systems Parkland has developed this technology in-house Bio-products comingled with conventional

Low Risk / High Cost

High Risk / Lower Cost

Biofuels Production

Lipids (Fats, Oils and Greases)

 Animal and Vegetable fats are key for bio/renewable diesel production because of availability and properties

Biodiesel (FAME) – Cover up the oxygen

Renewable Diesel (HDRD, RD, HEFA, HVO) – Remove all the oxygen

	Petroleum Diesel	Biodiesel (FAME)	Renewable Diesel (HDRD, HVO, HEFA)
Origin	Crude Oil	Fats, Oils	s and Grease
Oxygen	Zero	15%	Zero
Cold Weather Performance	Compatible	Limitations	Compatible
Typical CI (gCO2/MJ)	90	10	30
Cost		<diesel< td=""><td>>>Diesel</td></diesel<>	>>Diesel
Aromatics	10% - 30%	Zero	Zero

WHAT IS CO-PROCESSING?

- Processing renewable feedstocks like canola oil and oil derived from animal fat (tallow) alongside crude feedstock to produce renewable fuels with lower carbon intensity and GHG emissions.
- Leverage existing refinery infrastructure and technical expertise to facilitate commercial-scale production of renewable fuels

WHAT IS CO-PROCESSING?

- Two coprocessing units
- FCC Provides feel flexibility
- Renewable Gasoline and SAF

RENEWABLE PRODUCTION DEVELOPMENT TIMELINE

PARKLAND TOTAL ANNUAL CO-PROCESSING RATES

Year	Total Feed (bbl)	Renewable Fuels Produced (L)
2019	114,000	14 M
2020	272,000	36 M
2021	545,000	72 M
2022	701,000	92 M
2023	580,000	77 M

Feedstocks

Seed Oils

Waste Fats

Non-Lipid

Powering Journeys Energizing Communities

COLLOBARTION AND INNOVATION – Too small to do this on our own

